

Beta-Lactamase Inhibitor Screening

Microplate Assay Kit

User Manual

Catalog # CAK3001

(Version 1.1A)

Screening/studying/characterizing beta-Lactamase Inhibitors for efficient treatment of antibiotic resistant bacterial infections.

For research use only. Not for diagnostic or therapeutic procedures.

I. INTRODUCTION	2
II. KIT COMPONENTS	3
III. MATERIALS REQUIRED BUT NOT PROVIDED	4
IV. SAMPLE PREPARATION	4
V. ASSAY PROCEDURE	5
VI. CALCULATION	6
VII. TYPICAL DATA	7
VIII. TECHNICAL SUPPORT	7
IX. NOTES	7

I. INTRODUCTION

Beta-Lactamases (EC 3.5.2.6, β Ls), are a large family of hydrolases comprising more than 850 identified members expressed in Gram-positive and Gram-negative bacteria. β Ls can be classified according to their substrate or inhibitor specificity. These enzymes are capable of hydrolyzing four atom rings known as β -lactams. Antibiotics containing β -lactam rings (i.e. penicillin, cephalosporin, monobactam, carbapenem) are highly susceptible to be hydrolyzed via enzymatic activity, which deactivates their antibiotic potency. β Ls have become a significant clinical threat due to the alarming number of cases of bacterial strains showing β -lactam antibiotic resistance. β -Lactamase inhibition has become an urgent target in the treatment of bacterial infections displaying β -Lactam resistance. Several β -Lactam derivatives have been reported as β -Lactamase inhibitors; however, only clavulanic acid, sulbactam and tazobactam have reached clinical importance.

Beta-Lactamase Inhibitor Screening Microplate Assay Kit provides a rapid, simple, sensitive, and reliable test suitable for high-throughput screening of β -Lactamase inhibitors. This kit is based on the hydrolysis of Nitrocefin, a chromogenic cephalosporin, in the presence of Tazobactam-a potent inhibitor of β -Lactamase, the rate of hydrolysis of the substrate is decreased.

II. KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Reaction Buffer	20 ml x 1	4 °C
Substrate	Powder x 1	-20 °C, keep in dark
Diluent	0.2 ml x 1	4 °C
Enzyme	Powder x 1	-20 °C, keep in dark
Inhibitor Control (Tazobactam)	Powder x 1	-20 °C
Technical Manual	1 Manual	

Note:

- Substrate: Warm Diluent to RT prior to use, centrifuge the Substrate tube briefly, add 0.2 ml Diluent to dissolve before use and vortex, then add 0.8 ml Reaction Buffer mix. Store at -20 °C. Use within one month.
- **Inhibitor Control:** Centrifuge the tube briefly, add 1 ml Reaction Buffer to dissolve before use and vortex, the concentration will be 5 mmol/L. (Dilute Inhibitor Control 5-fold by adding 4 μ l of Inhibitor Control into 16 μ l of Diluent). Store at -20 °C. Use within one month.
- **Enzyme**: add 1 ml Reaction Buffer to dissolve before use, then add 20 μ l into 980 μ l Reaction Buffer mix. Aliquot & store at -80 °C. Use within one month.

III. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 490 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Centrifuge
- 6. Timer

IV. SAMPLE PREPARATION

Dissolve test inhibitors into proper solvent.

V. ASSAY PROCEDURE

Warm all regents to room temperature before use.

Add following reagents into the microplate:

Reagent	Sample	Control	Inhibitor	Blank	
			Control		
Reaction Buffer	60 µl	60 µl	60 µl	60 µl	
Sample	20 µl				
Distilled water		20 µl		30 µl	
Inhibitor Control			20 µl		
Enzyme	10 µl	10 µl	10 µl		
Substrate	10 µl	10 µl	10 µl	10 µl	
Mix, measure the absorbance in kinetic mode for 5-30 min. at 490 nm. Choose					
two time points (T1 & T2) in the linear range of the plot and obtain the					

Note:

1) Perform 5-fold serial dilutions of the samples as much as needed.

corresponding values for the absorbance (Abs1 and Abs2).

2) The Control must be set up each time the assay is run.

3) Reagents must be added step by step, can not be mixed and added together.

VI. CALCULATION

Slope_{Control}= (Abs2_{Control} - Abs1_{Control}) / (T2 - T1) Slope_{Sample}= (Abs2_{Sample} - Abs1_{Sample}) / (T2 - T1) Relative Inhibition (%) = (Slope_{Control} - Slope_{Sample}) / Slope_{Control} × 100%

Slope_{Sample}: the slope of the Sample Inhibitor Slope_{Control}: the slope of the Enzyme Control Abs1_{Sample}: the Sample Inhibitor absorbance at time point T1 Abs2_{Sample}: the Sample Inhibitor absorbance at time point T2 Abs1_{Control}: the Enzyme Control absorbance at time point T1 Abs2_{Control}: the Enzyme Control absorbance at time point T2

VII. TYPICAL DATA

Inhibition of β -Lactamase Enzymatic Activity with Tazobactam

Different concentrations inhibitor control (Tazobactam) relative inhibition

VIII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online to www.cohesionbio.com or contact us at techsupport@cohesionbio.com

IX. NOTES